1,518 research outputs found

    Neutrino, Lepton, and Quark Masses in Supersymmetry

    Get PDF
    The recently proposed model of neutrino mass with no new physics beyond the TeV energy scale is shown to admit a natural and realistic supersymmetric realization, when combined with another recently proposed model of quark masses in the context of a softly broken U(1) symmetry. Four Higgs doublets are required, but two must have masses at the TeV scale. New characteristic experimental predictions of this synthesis are discussed.Comment: 7 pages, no figur

    The U(1) symmetry of the non-tribimaximal pattern in the degenerate mass spectrum case of the neutrino mass matrix

    Full text link
    On account of the new neutrino oscillation data signalling a non-zero value for the smallest mixing angle (θz\theta_z), we present an explicit realization of the underlying U(1) symmetry characterizing the maximal atmospheric mixing angle (θy=π/4\theta_y = \pi / 4) pattern with two degenerate masses but now with generic values of θz\theta_z. We study the effects of the form invariance with respect to U(1), and/or Z3Z_3, Z2Z_2 subgroups, on the Yukawa couplings and the mass terms. Later on, we specify θz\theta_z to its experimental best fit value (8o \sim 8^o), and impose the symmetry in an entire model which includes charged leptons, and many Higgs doublets or standard model singlet heavy scalars, to show that it can make room for the charged lepton mass hierarchies. In addition, we show for the non-tribimaximal value of θz0\theta_z \neq 0 within type-I seesaw mechanism enhanced with flavor symmetry that neutrino mass hierarchies can be generated. Furthermore, lepton/baryogenesis can be interpreted via type-II seesaw mechanism within a setup meeting the flavor U(1)-symmetry.Comment: latex, 1 table, 20 pages. Typos are corrected, shortened version to appear in Phys. Rev.

    On Myosin II dynamics in the presence of external loads

    Full text link
    We address the controversial hot question concerning the validity of the loose coupling versus the lever-arm theories in the actomyosin dynamics by re-interpreting and extending the phenomenological washboard potential model proposed by some of us in a previous paper. In this new model a Brownian motion harnessing thermal energy is assumed to co-exist with the deterministic swing of the lever-arm, to yield an excellent fit of the set of data obtained by some of us on the sliding of Myosin II heads on immobilized actin filaments under various load conditions. Our theoretical arguments are complemented by accurate numerical simulations, and the robustness of the model is tested via different choices of parameters and potential profiles.Comment: 6 figures, 8 tables, to appear on Biosystem

    Resonant Leptogenesis and Verifiable Seesaw from Large Extra Dimensions

    Full text link
    In the presence of large extra dimensions, the fundamental scale could be as low as a few TeV. This yields leptogenesis and seesaw at a TeV scale. Phenomenologically two TeV-scale Majorana fermions with a small mass split can realize a resonant leptogenesis whereas a TeV-scale Higgs triplet with a small trilinear coupling to the standard model Higgs doublet can give a verifiable seesaw. We propose an interesting scenario where the small parameters for the resonant leptogenesis and the type-II seesaw can be simultaneously generated by the propagation of lepton number violation from distant branes to our world.Comment: 5 pages. More discussions and references. Published in PR

    Duality in Left-Right Symmetric Seesaw Mechanism

    Full text link
    We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos mνm_\nu and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix ff, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution ff, there is a dual solution f^=mν/vLf\hat{f}=m_\nu/v_L-f, where vLv_L is the VEV of the triplet Higgs. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix ff. For nn lepton generations the number of solutions is 2n2^n. We develop an exact analytic method of solving the seesaw non-linear matrix equation for ff.Comment: 4 pages, revtex, small clarifications added, title changed to match published versio

    Neutrino mixing matrix in the 3-3-1 model with heavy leptons and A4A_4 symmetry

    Full text link
    We study the lepton sector in the model based on the local gauge group SU(3)cSU(3)LU(1)XSU(3)_c\otimes SU(3)_L\otimes U(1)_X which do not contain particles with exotic electric charges. The seesaw mechanism and discrete A4A_4 symmetry are introduced into the model to understand why neutrinos are especially light and the observed pattern of neutrino mixing. The model provides a method for obtaining the tri-bimaximal mixing matrix in the leading order. A non-zero mixing angle Ve3V_{e3} presents in the modified mixing matrix.Comment: 10 page

    The small mixing angle θ13\theta_{13} and the lepton asymmetry

    Full text link
    We present the correlation of low energy CP phases, both Dirac and Majorana, and the lepton asymmetry for the baryon asymmetry in the universe, with a certain class of Yukawa matrices that consist of two right-handed neutrinos and include one texture zero in themselves. For cases in which the amount of the lepton asymmetry YLY_L turns out to be proportional to θ132\theta_{13}^2, we consider the relation between two types of CP phases and the relation of YLY_L versus the Jarlskog invariant or the amplitude of neutrinoless double beta decay as θ13\theta_{13} varies.Comment: 17 pages, 14 figures, information for figures added, version published in PR

    Gauge mediated supersymmetry breaking and the cosmology of Left-Right symmetric model

    Full text link
    Left-Right symmetry including supersymmetry presents an important class of gauge models which may possess natural solutions to many issues of phenomenology. Cosmology of such models indicates a phase transition accompanied by domain walls. Such walls must be unstable in order to not conflict with standard cosmology, and can further be shown to assist with open issues of cosmology such as dilution of unwanted relic densities and leptogenesis. In this paper we construct a model of gauge mediated supersymmetry breaking in which parity breaking is also signalled along with supersymmetry breaking and so as to be consistent with cosmological requirements. It is shown that addressing all the stated cosmological issues requires an extent of fine tuning, while in the absence of fine tuning, leptogenesis accompanying successful completion of the phase transition is still viable
    corecore